Contents

Section 1: Capnography Introduction ..01
Section 2: Capnography & PCA ...03
Section 3: Capnography & Critical Care ..07
Section 4: Capnography & Resuscitation ...11
Section 5: Capnography & Procedural Sedation13
Section 6: Capnography & EMS ...15
Section 7: Capnography & Sleep Studies ...19
WHAT IS CAPNOGRAPHY?
1. Tool to assess ventilation by monitoring end tidal carbon dioxide (ETCO₂)
2. Carbon Dioxide (CO₂) production
3. CO₂ produced by metabolism and diffused into the blood stream
4. Blood stream then transports the CO₂ to the lungs (circulation/transportation)
5. CO₂ is eliminated with ventilation

ETCO₂ VALUES
• Normal values 35-45 mmHg
• ETCO₂ and the respiratory rate are inversely related:
 - Increase in RR will decrease ETCO₂
 - Decrease in RR will increase ETCO₂

CLINICAL APPLICATIONS–ERTV
1. Evaluate
 a) Efficacy of breathing treatments
 b) Gradient (PaCO₂ – ETCO₂)
 c) Patient’s respiratory status
2. Resuscitate
 a) Intubation verification
 b) Early indicator of return of spontaneous circulation
 c) Adequacy of CPR (rate, depth and force of compressions)
3. Transport
 a) Continuous patient assessment
 b) Adequacy of ventilation
 c) Endotracheal tube stability and patency
4. Ventilate
 a) Measures adequacy of ventilation (appropriate settings)
 b) Weaning, early indicator of respiratory muscle fatigue
WAVEFORM ANALYSIS
Five Characteristics of the Waveforms:

1. Evaluate
 a) Tall = High ETCO₂
 b) Small = Low ETCO₂
2. Rate
 a) Respiratory rate
3. Rhythm
 a) Regular
 b) Increasing/decreasing in size
 c) Widening
4. Baseline
 a) Zero
5. Shape of the waveform (square shape)

NORMAL ANALYSIS
(NORMAL ETCO₂ 35-45 mmHg)

1. Baseline = should be zero
2. Upstroke = early exhalation
3. Plateau
 ★. End tidal concentration
4. Inspiration begins

![Normal Analysis Diagram](image-url)
WHY USE CAPNOGRAPHY WITH PCA?

- Medications delivered via Patient Controlled Analgesia (PCA) have the potential to impact respiratory efforts, depending on the patient and dosing.
- Capnography monitoring is a non-invasive indicator for assessing the effectiveness of this therapy.
- Capnography allows for a breath by breath analysis of the patient’s ventilation.
- Detecting respiratory depression or apnea related to oversedation.
- Detecting hyperventilation due to pain allows clinicians to intervene before an acute respiratory event and make informed decisions about the care of patients receiving PCA.
- Alarm parameters can be set to automatically alert the clinician to:
 - Hyperventilation
 - Hypoventilation
 - Apnea (no breath)
 - Airway obstruction.

HOW TO MONITOR:

1. Obtain baseline information
 a) Respiratory rate
 b) ETCO2 value
 c) Waveform: note the shape, size, etc
2. Monitor patient for changes:
 a) Baseline information
 b) Trend and assess
INCREASING ETCO$_2$ (HYPOVENTILATION)

Possible causes:
- Over medication or analgesia
- Snoring or possible obstruction
- Hypertension

Intervention:
- Adhere to established hospital protocols/guidelines
- Follow hospital BLS protocol for ABC’s
- Assess sedation level
- Stimulate patient
- Inform MD

DECREASING ETCO$_2$ (HYPERVENTILATION)

Possible causes:
- Increase in pain level
- Increase in anxiety or fear
- Hypovolemia
- Hypotension
- Respiratory distress or shortness of breath

Intervention:
- Adhere to established hospital protocols/guidelines
- Treat the cause of increased respiratory rate
- Follow hospital BLS protocol for ABC’s
- Reduce pain stimulus
- Inform MD
APNEA (NO BREATH)

Possible causes:
- Equipment malfunction, check all connections
- Shallow breathing
- Over medication or sedation

Intervention:
- Adhere to established hospital protocols/guidelines
- Follow hospital BLS protocol for ABC’s
- Stimulate patient
- Inform MD

PARTIAL AIRWAY OBSTRUCTION (IRREGULAR BREATHING)

Possible causes:
- Poor head or neck alignment
- Shallow breathing
- Over medication or sedation

Intervention:
- Adhere to established hospital protocols/guidelines
- Follow hospital BLS protocol for ABC’s
- Stimulate patient
- Inform MD
Section 3: Capnography & Critical Care

THE GRADIENT

Observing the difference between arterial and exhaled carbon dioxide can also give valuable data about the patient’s condition. The alveolar-arterial gradient is the difference between the alveolar carbon dioxide level (ETCO2) and the arterial level (PaCO2).

In adults with normal cardiorespiratory function and normal ventilation and perfusion, the ETCO2 is 2-5 mmHg lower than the PaCO2.

Gradient Equation = PaCO2 - ETCO2

To determine a patient’s gradient, draw an arterial blood gas, at the same time note the ETCO2 value. Once the arterial blood gas results are back, subtract the ETCO2 value that was noted from the PaCO2 value. This will provide you an initial gradient to trend. Following this initial gradient, clinicians can utilize the previous PaCO2 and subtract current ETCO2 readings. If the gradient is increasing the patient’s condition may be becoming worse. The clinician needs to determine if this is due to metabolism, circulation or ventilation.

Dead space ventilation occurs when the alveoli are ventilated but not perfused. Clinical situations such as hypotension, hypovolemia, excessive PEEP, pulmonary embolism, or cardiopulmonary arrest result in a decreased ETCO2 and a widening of the gradient (widening is equal to an increase in the number or gradient such as a gradient starting at 10 mmHg and then increasing to 15 mmHg).

Shunt perfusion occurs when the alveoli are perfused but not ventilated. This can be due to pneumonia, mucous plugging, or atelectasis. ETCO2 may decrease slightly, but carbon dioxide is highly soluble and will diffuse out of the blood into the available alveoli. Therefore, little effect on the gradient is seen. In this case, the patient’s oxygenation status may suffer, and positive end expiratory pressure (PEEP) or continuous positive airway pressure will be indicated to re-expand the atelectatic lung units.
INCREASING ETCO2 LEVEL
An increase in the level of ETCO₂ from previous levels. Possible causes:
- Decrease in respiratory rate (hypoventilation)
- Decrease in tidal volume
- Increase in metabolic rate
- Rapid rise in body temperature
- Increase in cardiac output
- Exhalation valve malfunction

DECREASING ETCO2 LEVEL
Decrease in the level of ETCO₂ from previous levels. Possible causes:
- Increase in respiratory rate (hyperventilation)
- Increase in tidal volume
- Decrease in metabolic rate
- Decrease in core body temperature
- Decrease in cardiac output
- Circuit leak
- Poor sampling
REBREATHING

Elevation of the baseline indicates rebreathing (may show increase in ETCO₂)

Possible Causes:

- Faulty expiratory valve on ventilator or anesthesia machine
- Inadequate inspiratory flow
- Partial rebreathing
- Insufficient expiratory time

OBSTRUCTION IN BREATHING CIRCUIT OR AIRWAY

Elevation of the baseline indicates rebreathing (may show increase in ETCO₂)

Possible Causes:

- Obstruction in breathing circuit or airway
- Inadequate inspiratory flow
- Partially kinked or occluded artificial airway
- Presence of a foreign body in the upper airway
- Bronchospasm
APNEA (NO BREATH)

Complete loss of waveform indicating no CO2 present, since this occurred suddenly consider:

- Endotracheal tube dislodged
- Total obstruction of endotracheal or trach tube
- Equipment malfunction, check all connections
Capnography & Resuscitation

CAPNOGRAPHY & RESUSCITATION

The AHA stresses the importance of high quality CPR. Compressions need to be at the correct rate, depth and allowing for full recoil. Capnography provides clinicians with a noninvasive method for monitoring CPR effectiveness. When a patient cardiac arrests CO2 levels fall abruptly because of the absence of cardiac output (blood flow) and pulmonary blood flow. When compressions are initiated cardiac output is generated. The higher the ETCO2 value during resuscitation the greater the cardiac output. If lower ETCO2 levels are observed during resuscitation this may signal a need for changes in CPR techniques or compressions. The 2010 AHA and ERC guidelines support the use of capnography to assist during compressions. It is now recommended to utilize quantitative waveform capnography in intubated patients to monitor CPR quality, optimize chest compressions and detect return of spontaneous circulation (ROSC). If ETCO2 is <10mmHg, the AHA suggests trying to improve CPR quality by optimizing chest compressions. When there is a dramatic sustained increase in ETCO2 (typically > 40mmHg), it signals ROSC1.

American Heart Association (AHA) guidelines for Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care (ECC). Highlights of the 2010 American Heart Association Guidelines for CPR and ECC. Available at: www.heart.org/idc/groups/heart public/@wcm/@ecc/documents/downloadable/ucm_317350.pdf
OBSTRUCTION IN BREATHING CIRCUIT OR AIRWAY

- Esophageal intubation: ETCO2 levels 0 or near 0
- Adequate CPR: ETCO2 levels approximately 10 mmHg
- Return of spontaneous circulation: Sudden increase to near normal ETCO2 levels of greater than 40 mmHg
- Rescuer fatigue: Decreasing levels of ETCO2
Capnography & Procedural Sedation

CAPNOGRAPHY & PROCEDURAL SEDATION

Medications are administered to raise pain thresholds, decrease anxiety and to provide amnesia during procedures while minimally depressing the patient’s level of consciousness. Medications used during these events often depress the respiratory system. Monitoring ETCO₂ will provide a breath by breath analysis of the patient’s ventilation status and allow the clinician to intervene before the patient experiences an acute respiratory event. When possible, clinicians should obtain baseline values and observe the waveform. During the procedure, clinicians should observe for changes in the waveform in addition to changes in value and reassess the patient whenever necessary.

Follow hospital protocols which may include:
- Follow hospital BLS protocol for ABC’s
- Patient assessment
- Stimulate patient
- Check position of cannula on patient
- Discontinue delivery of medications if appropriate
- Inform MD
- Reversal agent administration

REBREATHING

Cause:
- Generally due to shallow respirations

Intervention:
- Adjust head and neck alignment
- Ask patient to take deep breath (shallow breathing)
- Check position of cannula
SHALLOW BREATHING

Cause:
- Volume of air being exchanged is not adequate

Intervention:
- Adjust head and neck alignment
- Ask patient to take deep breath
- Check position of cannula
- Observe patient closely

APNEA (No breath)

Cause:
- Patient is not breathing or malfunction with equipment

Intervention:
- Check position of cannula and connections
- Check head and neck alignment
- ABC protocol
Capnography & EMS

CAPNOGRAPHY & EMS

Applications: ERTV

Evaluate:
- Efficacy of breathing treatments
- Patient’s respiratory status

Resuscitate:
- Intubation verification
- Early indicator of return of spontaneous circulation
- Adequacy of CPR (rate, depth and force of compressions)

Transport:
- Continuous patient assessment
- Adequacy of ventilation
- Tube patency

Ventilate:
- Measures adequacy of ventilation

Increasing ETCO₂ Level

An increase in the level of ETCO₂ from previous levels. Possible causes:
- Decrease in respiratory rate (hypoventilation)
- Decrease in tidal volume
- Increase in metabolic rate
- Rapid rise in body temperature
- Increase in cardiac output
- Exhalation valve malfunction
DECREASING ETCO2 LEVEL
Decrease in the level of ETCO2 from previous levels. Possible causes:

- Increase in respiratory rate (hyperventilation)
- Increase in tidal volume
- Decrease in metabolic rate
- Decrease in core body temperature
- Decrease in cardiac output
- Circuit leak
- Poor sampling

OBSTRUCTION IN BREATHING CIRCUIT OR AIRWAY
Obstruction expiratory gas flow is noted as a change in the slope of the ascending limb of the capnogram (expiratory plateau may be absent):

- Obstruction in breathing circuit or airway
- Inadequate inspiratory flow
- Presence of a foreign body in the upper airway
- Partially kinked or occluded artificial airway
- Bronchospasm
APNEA (NO BREATH)
Complete loss of waveform indicating no CO2 present, since this occurred suddenly consider:
- Endotracheal tube dislodged
- Total obstruction of endotracheal or trach tube
- Equipment malfunction, check all connections
- Patient not breathing

ETCO₂ VALUES
- Esophageal intubation: ETCO₂ levels 0 or near 0
- Adequate CPR = ETCO₂ levels approximately 10 mmHg
- Return of spontaneous circulation: Sudden increase to near normal ETCO₂ levels of greater than 40 mmHg
- Rescuer fatigue: Decreasing levels of ETCO₂
ESOPHAGEAL INTUBATION

- No waveform indicating no CO₂ present, endotracheal tube in the esophagus
Section 7: Capnography & Sleep Studies

Capnography & Sleep Studies

Adults
- Distinguish between central (nervous system) and obstructive (airway) events
- Use for patients with underlying cardiovascular disorders such as congestive heart failure

Pediatrics
- Guideline
- “Hypoventilation...measured by either transcutaneous PCO₂ and/or ETCO₂...” (AASM Manual for Scoring of Sleep and Associated Events. Pg. 49)
- Differential diagnosis

INCREASING ETCO₂ LEVEL (HYPOVENTILATION)
- Decrease in respiratory rate (hypoventilation)
- Decrease in tidal volume

APNEA (No breath)
- No waveform indicating no CO₂ present